Information Technology
Hands on Training icon
Hands On Training
Hands on Training icon

Introduction to R programming & RStudio for beginners

Course Cover

4.5

(4)

compare button icon

Course Features

icon

Duration

30 minutes

icon

Delivery Method

Online

icon

Available on

Limited Access

icon

Accessibility

Desktop, Laptop

icon

Language

English

icon

Subtitles

English

icon

Level

Beginner

icon

Teaching Type

Self Paced

icon

Video Content

30 minutes

Course Description

(Please note: this course is a basic introduction to R and RStudio, meant for beginner level. More advanced courses coming soon.)

R is currently one of the most requested programming languages in the Data Science job market that makes it the hottest trend nowadays.

R is a programming language and free software environment for statistical computing, data manipulation & analysis, graphics representation and reporting supported by the R Foundation for Statistical Computing. The R language is widely used among statisticians and data miners for developing statistical software and data analysis. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

No one is born a data scientist. Every person who works with R today was once a complete beginner. No matter how much you know about the R ecosystem already, you’ll always have more to learn.

Applications of R:

We use R for Data Science. It gives us a broad variety of libraries related to statistics. It also provides the environment for statistical computing and design.

R is used by many quantitative analysts as its programming tool. Thus, it helps in data importing and cleaning.

R is the most prevalent language. So many data analysts and research programmers use it. Hence, it is used as a fundamental tool for finance.

Tech giants like Google, Facebook, bing, Accenture, Wipro and many more using R nowadays.

Why R Programming Language?

R programming is used as a leading tool for machine learning, statistics, and data analysis. Objects, functions, and packages can easily be created by R.

It’s a platform-independent language. This means it can be applied to all operating system.

It’s an open-source free language. That means anyone can install it in any organization without purchasing a license.

R programming language is not only a statistic package but also allows us to integrate with other languages (C, C++). Thus, you can easily interact with many data sources and statistical packages.

The R programming language has a vast community of users and it’s growing day by day.

Statistical Features of R:

Basic Statistics: The most common basic statistics terms are the mean, mode, and median. These are all known as “Measures of Central Tendency.” So using the R language we can measure central tendency very easily.

Static graphics: R is rich with facilities for creating and developing interesting static graphics. R contains functionality for many plot types including graphic maps, mosaic plots, biplots, and the list goes on.

Probability distributions: Probability distributions play a vital role in statistics and by using R we can easily handle various types of probability distribution such as Binomial Distribution, Normal Distribution, Chi-squared Distribution and many more.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

One of R’s strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed.

R, like S, is designed around a true computer language, and it allows users to add additional functionality by defining new functions. Much of the system is itself written in the R dialect of S, which makes it easy for users to follow the algorithmic choices made. For computationally-intensive tasks, C, C++ and Fortran code can be linked and called at run time. Advanced users can write C code to manipulate R objects directly.

R & RStudio includes

an effective data handling and storage facility,

a suite of operators for calculations on arrays, in particular matrices,

a large, coherent, integrated collection of intermediate tools for data analysis,

graphical facilities for data analysis and display either on-screen or on hardcopy, and

a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

Course Overview

projects-img

International Faculty

projects-img

Post Course Interactions

projects-img

Instructor-Moderated Discussions

Skills You Will Gain

Prerequisites/Requirements

Some secondary level mathematics might be helpful, but not compulsory

you should have a basic understanding of Computer Programming terminologies.

A basic understanding of any of the programming languages will help you in understanding the R programming concepts and move fast on the learning track.

What You Will Learn

Comprehensive introduction to R programming & R Studio

how to analyse data using R and R studio

Introduction to R coding

Introduction to data science

introduction to data analytics

Course Instructors

Author Image

JP COURSES

Instructor

– Great Online Courses to Help Improve Your Life – We create online courses to share our diverse range of expertise, skills, knowledge and wisdom about many different topics in Business, IT, Tech, In...

Course Reviews

Average Rating Based on 4 reviews

4.5

25%

75%

Course Cover