Course Features

icon

Duration

12 weeks

icon

Delivery Method

Online

icon

Available on

Limited Access

icon

Accessibility

Mobile, Desktop, Laptop

icon

Language

English

icon

Subtitles

English

icon

Level

Advanced

icon

Effort

10 hours per week

icon

Teaching Type

Instructor Paced

Course Description

Machine Learning is the basis for the most exciting careers in data analysis today. You’ll learn the models and methods and apply them to real world situations ranging from identifying trending news topics, to building recommendation engines, ranking sports teams and plotting the path of movie zombies.

Major perspectives covered include:

  • probabilistic versus non-probabilistic modeling
  • supervised versus unsupervised learning

Topics include: classification and regression, clustering methods, sequential models, matrix factorization, topic modeling and model selection.

Methods include: linear and logistic regression, support vector machines, tree classifiers, boosting, maximum likelihood and MAP inference, EM algorithm, hidden Markov models, Kalman filters, k-means, Gaussian mixture models, among others.

In the first half of the course we will cover supervised learning techniques for regression and classification. In this framework, we possess an output or response that we wish to predict based on a set of inputs. We will discuss several fundamental methods for performing this task and algorithms for their optimization. Our approach will be more practically motivated, meaning we will fully develop a mathematical understanding of the respective algorithms, but we will only briefly touch on abstract learning theory.

In the second half of the course we shift to unsupervised learning techniques. In these problems the end goal less clear-cut than predicting an output based on a corresponding input. We will cover three fundamental problems of unsupervised learning: data clustering, matrix factorization, and sequential models for order-dependent data. Some applications of these models include object recommendation and topic modeling.

Course Overview

projects-img

Live Class

projects-img

Human Interaction

projects-img

Personlized Teaching

projects-img

International Faculty

projects-img

Post Course Interactions

projects-img

Instructor-Moderated Discussions

Skills You Will Gain

Prerequisites/Requirements

Calculus

Linear algebra

Probability and statistical concepts

Coding and comfort with data manipulation

What You Will Learn

Supervised learning techniques for regression and classification

Unsupervised learning techniques for data modeling and analysis

Probabilistic versus non-probabilistic viewpoints

Optimization and inference algorithms for model learning

Course Instructors

Author Image

John W. Paisley

Department of Electrical Engineering at Columbia University

John Paisley is an Assistant Professor in the Department of Electrical Engineering at Columbia University. John is also an affiliated member of the Data Science Institute at Columbia. John received h...
Course Cover